Publications

2005

Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M, Wu B, Pasqualucci L, Neuberg D, Aguiar RC, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005;105:1851–61.
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with recognized variability in clinical outcome, genetic features, and cells of origin. To date, transcriptional profiling has been used to highlight similarities between DLBCL tumor cells and normal B-cell subtypes and associate genes and pathways with unfavorable outcome. To identify robust and highly reproducible DL-BCL subtypes with comprehensive transcriptional signatures, we used a large series of newly diagnosed DLBCLs, whole genome arrays, and multiple clustering methods. Tumors were also analyzed for known common genetic abnormalities in DLBCL. There were 3 discrete subsets of DLBCL-"oxidative phosphorylation,""B-cell receptor/proliferation," and "host response" (HR)-identified characterized using gene set enrichment analysis and confirmed in an independent series. HR tumors had increased expression of T/natural killer cell receptor and activation pathway components, complement cascade members, macrophage/dendritic cell markers, and inflammatory mediators. HR DLB-CLs also contained significantly higher numbers of morphologically distinct CD2+/CD3+ tumor-infiltrating lymphocytes and interdigitating S100+/gamma interferon-induced lysosomal transferase-positive (GILT+) CD1a-/CD123- dendritic cells. The HR cluster shared features of histologically defined T-cell/histiocyte-rich B-cell lymphoma, including fewer genetic abnormalities, younger age at presentation, and frequent splenic and bone marrow involvement. These studies identify tumor microenvironment and host inflammatory response as defining features in DLBCL and suggest rational treatment targets in specific DLBCL subsets.
Pegtel DM, Subramanian A, Sheen TS, Tsai CH, Golub TR, Thorley-Lawson DA. Epstein-Barr-virus-encoded LMP2A induces primary epithelial cell migration and invasion: possible role in nasopharyngeal carcinoma metastasis. J Virol. 2005;79:15430–42.
Nonkeratinizing nasopharyngeal carcinomas (NPC) are >95% associated with the expression of the Epstein-Barr virus (EBV) LMP2A latent protein. However, the role of EBV, in particular, LMP2A, in tumor progression is not well understood. Using Affymetrix chips and a pattern-matching computational technique (neighborhood analysis), we show that the level of LMP2A expression in NPC biopsy samples correlates with that of a cellular protein, integrin-alpha-6 (ITGalpha6), that is associated with cellular migration in vitro and metastasis in vivo. We have recently developed a primary epithelial model from tonsil tissue to study EBV infection in epithelial cells. Here we report that LMP2A expression in primary tonsil epithelial cells causes them to become migratory and invasive, that ITGalpha6 RNA levels are up-regulated in epithelial cells expressing LMP2, and that ITGalpha6 protein levels are increased in the migrating cells. Blocking antibodies against ITGalpha6 abrogated LMP2-induced invasion through Matrigel by primary epithelial cells. Our results provide a link between LMP2A expression, ITGalpha6 expression, epithelial cell migration, and NPC metastasis and suggest that EBV infection may contribute to the high incidence of metastasis in NPC progression.
Shepard JL, Amatruda JF, Stern HM, Subramanian A, Finkelstein D, Ziai J, Finley KR, Pfaff KL, Hersey C, Zhou Y, et al. A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc Natl Acad Sci U S A. 2005;102:13194–9.
A major goal of cancer research has been to identify genes that contribute to cancer formation. The similar pathology between zebrafish and human tumors, as well as the past success of large-scale genetic screens in uncovering human disease genes, makes zebrafish an ideal system in which to find such new genes. Here, we show that a zebrafish forward genetic screen uncovered multiple cell proliferation mutants including one mutant, crash&burn (crb), that represents a loss-of-function mutation in bmyb, a transcriptional regulator and member of a putative proto-oncogene family. crb mutant embryos have defects in mitotic progression and spindle formation, and exhibit genome instability. Regulation of cyclin B levels by bmyb appears to be the mechanism of mitotic accumulation in crb. Carcinogenesis studies reveal increased cancer susceptibility in adult crb heterozygotes. Gene-expression signatures associated with loss of bmyb in zebrafish are also correlated with conserved signatures in human tumor samples, and down-regulation of the B-myb signature genes is associated with retention of p53 function. Our findings show that zebrafish screens can uncover cancer pathways, and demonstrate that loss of function of bmyb is associated with cancer.

2004

Stegmaier K, Ross KN, Colavito SA, O’Malley S, Stockwell BR, Golub TR. Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation. Nat Genet. 2004;36:257–63.
Chemical genomics involves generating large collections of small molecules and using them to modulate cellular states. Despite recent progress in the systematic synthesis of structurally diverse compounds, their use in screens of cellular circuitry is still an ad hoc process. Here, we outline a general, efficient approach called gene expression-based high-throughput screening (GE-HTS) in which a gene expression signature is used as a surrogate for cellular states, and we describe its application in a particular setting: the identification of compounds that induce the differentiation of acute myeloid leukemia cells. In screening 1,739 compounds, we identified 8 that reliably induced the differentiation signature and, furthermore, yielded functional evidence of bona fide differentiation. The results indicate that GE-HTS may be a powerful, general approach for chemical screening.
Berger R, Febbo PG, Majumder PK, Zhao JJ, Mukherjee S, Signoretti S, Campbell KT, Sellers WR, Roberts TM, Loda M, et al. Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res. 2004;64:8867–75.
Androgen ablation is the primary treatment modality for patients with metastatic prostate cancer; however, the role of androgen receptor signaling in prostate cancer development remains enigmatic. Using a series of genetically defined immortalized and tumorigenic human prostate epithelial cells, we found that introduction of the androgen receptor induced differentiation of transformed prostate epithelial cells to a luminal phenotype reminiscent of organ-confined prostate cancer when placed in the prostate microenvironment. Moreover, androgen receptor expression converted previously androgen-independent, tumorigenic prostate epithelial cells into cells dependent on testosterone for tumor formation. These observations indicate that androgen receptor expression is oncogenic and addictive for the human prostate epithelium.
Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A. 2004;101:4164–9.
We describe here the use of nonnegative matrix factorization (NMF), an algorithm based on decomposition by parts that can reduce the dimension of expression data from thousands of genes to a handful of metagenes. Coupled with a model selection mechanism, adapted to work for any stochastic clustering algorithm, NMF is an efficient method for identification of distinct molecular patterns and provides a powerful method for class discovery. We demonstrate the ability of NMF to recover meaningful biological information from cancer-related microarray data. NMF appears to have advantages over other methods such as hierarchical clustering or self-organizing maps. We found it less sensitive to a priori selection of genes or initial conditions and able to detect alternative or context-dependent patterns of gene expression in complex biological systems. This ability, similar to semantic polysemy in text, provides a general method for robust molecular pattern discovery.
Coletta RD, Christensen K, Reichenberger KJ, Lamb J, Micomonaco D, Huang L, Wolf DM, Muller-Tidow C, Golub TR, Kawakami K, et al. The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci U S A. 2004;101:6478–83.
Homeobox genes constitute a large family of transcription factors that are essential during normal development and are often dysregulated in cancer. However, the molecular mechanisms by which homeobox genes influence cancer remain largely unknown. Here we show that the tissue-restricted cyclin A1 is a transcriptional target of the Six1 homeoprotein. Both genes are expressed in the embryonic but not the terminally differentiated mammary gland, and Six1-knockout mice show a dramatic reduction of cyclin A1 in the embryonic mammary gland. In addition, both genes are reexpressed in breast cancers. Six1 overexpression increases cyclin A1 mRNA levels and activity, cell proliferation, and tumor volume, whereas Six1 down-regulation decreases cyclin A1 mRNA levels and proliferation. Overexpression of Six1 in wild-type mouse embryonic fibroblasts, but not in knockout variants lacking the cyclin A1 gene, induces cell proliferation. Furthermore, inhibition of cyclin A1 in Six1-overexpressing mammary carcinoma cells decreases proliferation. Together these results demonstrate that cyclin A1 is required for the proliferative effect of Six1. We conclude that Six1 overexpression reinstates an embryonic pathway of proliferation in breast cancer by up-regulating cyclin A1.
Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, Nishimura EK, Golub TR, Fisher DE. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell. 2004;6:565–76.
The genomic organization of the CDK2 gene, which overlaps the melanocyte-specific gene SILV/PMEL17, poses an interesting regulatory challenge. We show that, despite its ubiquitous expression, CDK2 exhibits tissue-specific regulation by the essential melanocyte lineage transcription factor MITF. In addition, functional studies revealed this regulation to be critical for maintaining CDK2 kinase activity and growth of melanoma cells. Expression levels of MITF and CDK2 are tightly correlated in primary melanoma specimens and predict susceptibility to the CDK2 inhibitor roscovitine. CDK2 depletion suppressed growth and cell cycle progression in melanoma, but not other cancers, corroborating previous results. Collectively, these data indicate that CDK2 activity in melanoma is largely maintained at the transcriptional level by MITF, and unlike other malignancies, it may be a suitable drug target in melanoma.
Ebert BL, Golub TR. Genomic approaches to hematologic malignancies. Blood. 2004;104:923–32.
In the past several years, experiments using DNA microarrays have contributed to an increasingly refined molecular taxonomy of hematologic malignancies. In addition to the characterization of molecular profiles for known diagnostic classifications, studies have defined patterns of gene expression corresponding to specific molecular abnormalities, oncologic phenotypes, and clinical outcomes. Furthermore, novel subclasses with distinct molecular profiles and clinical behaviors have been identified. In some cases, specific cellular pathways have been highlighted that can be therapeutically targeted. The findings of microarray studies are beginning to enter clinical practice as novel diagnostic tests, and clinical trials are ongoing in which therapeutic agents are being used to target pathways that were identified by gene expression profiling. While the technology of DNA microarrays is becoming well established, genome-wide surveys of gene expression generate large data sets that can easily lead to spurious conclusions. Many challenges remain in the statistical interpretation of gene expression data and the biologic validation of findings. As data accumulate and analyses become more sophisticated, genomic technologies offer the potential to generate increasingly sophisticated insights into the complex molecular circuitry of hematologic malignancies. This review summarizes the current state of discovery and addresses key areas for future research.
Golub TR. Toward a functional taxonomy of cancer. Cancer Cell. 2004;6:107–8.
Interrogating the genomes of tumor cells with genomic and proteomic methods is becoming a mainstay of modern cancer classification efforts. This notion is brought to a new level by a paper in the July 23 issue of Cell, in which the dynamic responses of leukemia cells to perturbation are cataloged by flow cytometry, and the leukemias classified in terms of their functional responses. This study paves the way for more systematic attempts to bring functional genomics to the study of human cancer.