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Single duplex DNA sequencing with CODEC 
detects mutations with high sensitivity
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Heather A. Parsons    7, Erica L. Mayer7, G. Mike Makrigiorgos7, 
Todd R. Golub    1,7,8 & Viktor A. Adalsteinsson    1 

Detecting mutations from single DNA molecules is crucial in many fields 
but challenging. Next-generation sequencing (NGS) affords tremendous 
throughput but cannot directly sequence double-stranded DNA molecules 
(‘single duplexes’) to discern the true mutations on both strands. Here we 
present Concatenating Original Duplex for Error Correction (CODEC), 
which confers single duplex resolution to NGS. CODEC affords 1,000-fold 
higher accuracy than NGS, using up to 100-fold fewer reads than duplex 
sequencing. CODEC revealed mutation frequencies of 2.72 × 10−8 in sperm of 
a 39-year-old individual, and somatic mutations acquired with age in blood 
cells. CODEC detected genome-wide, clonal hematopoiesis mutations from 
single DNA molecules, single mutated duplexes from tumor genomes and 
liquid biopsies, microsatellite instability with 10-fold greater sensitivity and 
mutational signatures, and specific tumor mutations with up to 100-fold 
fewer reads. CODEC enables more precise genetic testing and reveals 
biologically significant mutations, which are commonly obscured by  
NGS errors.

Discovering extremely low-abundance mutations as rare as within 
a single double-stranded DNA molecule (a ‘single duplex’) is crucial 
to finding diagnostic1,2, predictive3,4 and prognostic5,6 biomarkers; 
understanding cancer evolution7,8 and somatic mosaicism9,10; and study-
ing infectious diseases11,12 and aging13,14. In principle, single-molecule 
sequencing technologies (for example, PacBio and Oxford Nanopore  
Technologies) can keep single DNA duplexes intact throughout their 
workflows to sequence them in whole to resolve true mutations on 
both strands apart from false mutations on either strand. However, 
in practice, they lack the required accuracy and throughput15,16. 

Next-generation sequencing (NGS), on the other hand, continues to 
offer superior read accuracy and throughput17 but is not configured to 
sequence single duplexes—at least not without severely compromising 
its throughput or utility.

NGS affords high throughput by reading short, clonally ampli-
fied DNA fragments in massively parallel fluorescence analysis. Yet, its 
accuracy is limited by the need to dissociate Watson and Crick strands 
of each DNA duplex. Without a complementary strand for compari-
son, errors introduced on either strand due to base damage, PCR and 
sequencing18 can be disguised as real mutations. While it is possible to 
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Results
Adapter quadruplex and workflow
The CODEC structure can be built by replacing a typical adapter duplex 
with the CODEC adapter quadruplex, containing all elements required 
for NGS. We rationally designed double-stranded segments of the 
adapter to hold the whole quadruplex and introduced single-stranded 
segments to mitigate the bending stiffness of the DNA double helix 
(Extended Data Fig. 1a,b). After adapter ligation seals both ends of an 
input molecule, strand displacing extension initiates at the remaining 
3′-ends to elongate each strand by using the opposite strand as a tem-
plate (Fig. 1b). This strategy allowed CODEC to physically concatenate 
the Watson strand with the reverse complement of the Crick strand 
into a single strand without forming a prohibitive hairpin or inverted 
repeat structure from two complementary sequences. The resulting 
structure is two original strands concatenated with the CODEC linker in 
the middle and Illumina adapters on both sides. The molecular process 
depicted in Fig. 1b replaces the adapter ligation step of commercial 
NGS library preparation workflows (Fig. 1c).

To fully use the concatenated structure, we also relocated the NGS 
library components. In contrast to the conventional Illumina structure 
with the NGS read primer binding sites on the outer side, we moved the 
binding sites to the CODEC linker and sequenced outward to prevent 
reading byproducts without the linker and improve quality scores 
(Extended Data Fig. 1c–e). Sample indices, which are typically added 
after adapter ligation and read separately from the inserts, were added 
during the ligation and read together with the inserts. This structure 
further suppressed index hopping compared to using typical unique 
dual indices28 (0.056% versus 0.16%). We designed sets of four sam-
ple indices that have all four bases at every position to ensure a high 
base diversity necessary for image analysis on Illumina sequencers 
(Extended Data Fig. 1f).

Proof of concept
We first confirmed that the CODEC workflow could create the intended 
NGS library structure by performing CODEC on four human cfDNA 
samples. We found that 72.8% of the reads showed the correct struc-
ture and retained information from both strands (Extended Data  

use unique molecular identifiers (UMIs) to separately track both strands 
of each DNA molecule to detect true mutations19, this does not solve 
the underlying limitation of NGS—duplex dissociation. For example, 
duplex sequencing20, which has been the gold standard of high-accuracy 
sequencing and used by other recent methods21,22, tags double-stranded 
UMIs on each original duplex to achieve >1,000-fold higher accuracy, 
but recovering both strands among many other strands could require 
100-fold excess reads23, which severely limits its utility.

To date, several methods have sought to overcome the low effi-
ciency of generating a duplex consensus, but they are limited to either 
targeted panels or shallow sequencing. Duplex proximity sequencing 
(Pro-Seq)24 and SaferSeqS25 use multiplexed PCR, limiting their appli-
cations to small targeted panels with deep sequencing. BotSeqS21 
performs 105-fold sample dilution to increase the chance of recovering 
both strands, which is not compatible with targeted deep sequencing 
or applications that require high sensitivity. NanoSeq22 improved the 
accuracy of BotSeqS by pairing it with a restrictive end-repair method 
that uses dideoxy bases to avoid nick extension, but as a result, it is 
not compatible with highly fragmented samples such as cell-free DNA 
(cfDNA) and is limited to 29% of the human genome when using its 
standard protocol. Some technologies such as o2n-seq26 and circle 
sequencing27 only use a single strand of a duplex, and thus lack the 
ability to create a duplex consensus. Despite the need for sequencing 
duplexes with high accuracy and throughput, there have only been 
methods for limited applications.

We thus reasoned that linking the information of both strands 
before strand dissociation could make NGS capable of reading single 
DNA duplexes with high efficiency. Here we developed a hybrid method 
called Concatenating Original Duplex for Error Correction (CODEC) 
that combines the massively parallel nature of NGS and the resolution 
of single-molecule sequencing by reading both strands of each DNA 
duplex with single NGS read pairs (Fig. 1a). Any differences between 
concatenated sequences would indicate alterations confined to one 
strand from either noncanonical base pairing created by nucleobase 
damage or an error introduced during PCR amplification or sequenc-
ing. CODEC is compatible with major NGS workflows ranging from 
targeted sequencing to whole-genome sequencing (WGS).
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Fig. 1 | Overview of CODEC. a, To distinguish real mutations from damaged 
bases or polymerase errors, CODEC physically links Watson and Crick strands 
of each original duplex, which may have an alteration confined to one strand. 
Each cluster reads an NGS library molecule with sequences of both strands 
to trace a whole duplex, hence single duplex sequencing. b, CODEC uses the 
adapter quadruplex, which is prepackaged with all of the components needed 

for Illumina NGS, followed by strand displacing extension. Unlike standard NGS, 
CODEC can read outward to sequence a UMI, an index and an insert together. 
Each NGS read pair becomes self-sufficient for forming a consensus between 
two strands of an original duplex. c, CODEC is compatible with both targeted 
sequencing and WGS.
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Fig. 2a–e). Because each insert does not need to be fully sequenced 
to determine the structure (Supplementary Text), the ratio of correct 
reads was not negatively affected by the longer insert size (Extended 
Data Fig. 2f). More details on each NGS dataset can be found in  
Supplementary Table 1.

For a fair comparison throughout this work, we matched CODEC 
and standard Illumina NGS on raw read pairs and deduplicated sequenc-
ing coverage for targeted and WGS, respectively, as per standard 
conventions (Supplementary Table 2)29. For CODEC, deduplicated 
coverage includes all byproducts (Extended Data Fig. 2a) that do not 
pass all CODEC filters, representing the cost of the sequencing. Unless  
otherwise indicated, coverage (for example, 30×) refers to dedupli-
cated coverage, whereas correct product depths are calculated based 
on deduplicated CODEC reads with the correct structure. Duplex 
depths are computed after all CODEC filters are implemented. Thus, 
duplex depths for CODEC will always be lower than the indicated cover-
ages. However, all raw or deduplicated CODEC reads can still be used 
for standard NGS analyses such as clonal mutation detection with 
established tools.

We next explored whether the fragments with the correct struc-
ture could provide comparable error rates to duplex sequencing using 
substantially fewer reads. To meet the high sequencing coverage 
requirements of duplex sequencing, we ran target enrichment with 
the pan-cancer hybridization capture panel (800 kb) on NGS librar-
ies, constructed from 20 ng cfDNA of a cancer patient and a healthy 

donor. Of note, sequenced bases that are different from the reference 
were named ‘residual single-nucleotide variant (SNV)’ or ‘residual 
indel’ instead of ‘error’ to reflect the low-abundance mutations left 
after excluding the germline and high-abundance (for example, >1% 
variant allele frequency (VAF)) somatic mutations20,22,30. When com-
pared to the ground truth based on high-abundance mutations from 
duplex sequencing data, we found that the mean CODEC residual SNV 
frequency of two individuals (2.9 × 10−7) was similar to that of duplex 
sequencing (4.3 × 10−7; Fig. 2a). Because error rates are affected by 
multiple factors other than a sequencing technology itself, we used 
the same experimental and computational protocols for all methods 
whenever applicable. The minimum required reads of each strand were 
two for duplex sequencing22,23. As expected, a consensus of Watson and 
Crick strands was crucial for suppressing errors; although single-strand 
consensus (SSC) among all Watson strand reads or all Crick strand reads 
(Extended Data Fig. 3) was more accurate than the no consensus and 
paired-end reads consensus (R1 + R2), residual mutation frequency 
of CODEC was 234-fold lower than that of SSC. Notably, even a single 
read pair of CODEC was equally accurate (Fig. 2b), as each of them is 
self-sufficient to form a duplex consensus.

CODEC had a strong advantage in the number of reads required 
to uncover the same number of unique DNA duplexes. When we 
sequenced more cfDNA samples of healthy donors and breast can-
cer patients (CODEC median 25 M raw read pairs, duplex sequenc-
ing median 31 M), we found that duplex sequencing could not start 
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Fig. 2 | Proof of concept. a, Residual SNV frequencies of CODEC, duplex 
sequencing and other consensus methods such as paired-end reads consensus 
(R1 + R2) and SSC. Target enrichment with a pan-cancer gene panel was 
performed on cfDNA of two individuals. Duplex sequencing required at least 
two reads of each strand22. b, CODEC residual SNV frequencies at each family 
size, which is the number of raw read pairs with the same UMI and start-stop 
positions. c, Recovery of unique original duplexes per targeted site in cfDNA of 
cancer patients and healthy donors against raw read pairs per target. d, Residual 

mutation frequencies and sequencing costs of different methods for WGS of the 
pilot genome NA12878 of the Genome in a Bottle Consortium. Because duplex 
sequencing WGS could not recover any duplex with the standard threshold, 
we had to relax it to one read of each strand only for this analysis. e, Residual 
SNV frequencies of WGS on human sperm with different end-repair/dA-tailing 
methods. a,b,d,e, Data points and error bars indicate mean values and 95% 
binomial confidence intervals by Wilson method, respectively.
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recovering original duplexes until receiving 600 read pairs per target 
on average (Fig. 2c). In contrast, CODEC started to recover them with 
220-fold fewer read pairs despite byproducts and off-target reads. The 
gap between required reads was maximized when recovering a smaller 
number of duplexes, suggesting that CODEC could be uniquely capable 
of sequencing broad genomic regions with shallow coverage. On the 
other hand, duplex sequencing eventually recovered more unique 
duplexes when it obtained enough read pairs (Extended Data Fig. 4a,b), 
although each duplex sequencing library needs different amounts 
of sequencing depending on its molecular complexity21. The lower 
endpoints of CODEC (mean 164 duplexes versus duplex sequencing 
mean 466 duplexes) were probably due to the lower library conversion 
efficiency of CODEC.

We next sought to determine whether CODEC could enable human 
whole-genome ‘duplex’ sequencing, which would otherwise be imprac-
tical due to high cost. To assess this, we applied CODEC (214 M raw read 
pairs) and duplex sequencing (305 M) to WGS of the pilot genome 
NA12878 of the Genome in a Bottle Consortium31. Because duplex 
sequencing WGS could not recover any duplexes with the standard 
threshold, we had to relax it to one read of each strand only for this 
analysis (Extended Data Fig. 4c). Throughout this work, we used the 
same variant calling pipeline for CODEC and standard WGS unless 
otherwise noted (see ‘CODEC single-fragment mutation caller’ in  
Methods). In a cost-benefit analysis, the cost of CODEC was 87 times 
lower than that of duplex sequencing while maintaining higher accu-
racy than standard WGS (Fig. 2d), although CODEC WGS was not as 
uniform as that of standard WGS at high GC content (Extended Data Fig. 
5a,b). Due to the high cost of duplex sequencing, we compared CODEC 
with standard WGS after this point and only used duplex sequencing 
for targeted panels. In addition, CODEC showed similarly low residual 
SNV frequencies in whole-exome sequencing (WES) of human genomic 
DNA (Extended Data Fig. 5c).

We reasoned that some errors in CODEC sequencing resulted 
from end-repair/dA-tailing (ER/AT) as shown for duplex consensus22,32. 
Indeed, residual mutation frequencies in CODEC were generally higher 
toward the ends of DNA fragments (Extended Data Fig. 6a). To address 
these issues, we paired CODEC with varied ER/AT methods and applied 
them to sperm DNA with an expectedly low biological mutation rate. 
We compared a commercial ER/AT method with Duplex-Repair32 and 
a custom ddBTP-blocked ER/AT inspired by ref. 22, which fully blocks 
ER/AT errors in theory (Extended Data Fig. 6b). When we applied these 
to a sperm DNA (39-year-old donor) before CODEC, Duplex-Repair and 
ddBTP-blocked ER/AT showed 5.1-fold and 18.6-fold lower residual 
SNV frequencies (1.00 × 10−7 and 2.72 × 10−8) than a commercial ER/AT 
kit (5.07 × 10−7), respectively (Fig. 2e and Extended Data Fig. 6c). With 
ddBTP-blocked ER/AT, the result was comparable to that of the recent 
report (1.48 × 10−8 for 21 year old and 4.38 × 10−8 for 73 year old)22.

Detection of germline and somatic mutations
Given the superior accuracy and single duplex resolution of CODEC, 
we then explored the various types of biological analyses that could 
be uniquely enabled, starting with germline genetic testing. Tradi-
tionally, with standard NGS, a mutation caller is required to discern 
true mutations from errors based on their evidence in multiple inde-
pendent reads (Fig. 3a). To test germline mutation detection at low 
coverage, we used an established caller instead of the single-fragment 
mutation caller (see ‘Germline SNV and small indel calling in down-
sampled WGS’ in Methods). When we compared CODEC and standard 
WGS of NA12878 at coverages ranging from 1× to 5× (0.6–3.0× correct 
product depth), CODEC showed 21-fold fewer false positives (FP) and 
2-fold more false negatives (FN) for germline SNPs than standard WGS, 
which was mostly caused by byproducts (Fig. 3b). At 40× coverage 
(17× correct product depth), the FN rate was further reduced to 0.057. 
The best FN (0.026) was achieved when also including nonduplex 
reads such as the byproducts (Supplementary Table 3). This result 

implied that CODEC WGS may better resolve low-abundance muta-
tions, which are obscured by FP in standard WGS, especially with 
shallow sequencing coverage.

To examine the potential for CODEC to detect low-abundance 
mutations, such as those arising from clonal hematopoiesis (CH), 
directly from single DNA duplexes, we analyzed 6× CODEC WGS 
(0.47–1.02× duplex depth) after Duplex-Repair and 6× standard WGS 
on buffy coat-derived germline DNA from 15 breast cancer patients. 
Duplex-Repair was not applied to standard WGS because its effect 
was negligible on standard Illumina NGS32. As expected, only CODEC 
was able to reveal a linear relationship between the number of somatic 
mutations and age (R2 = 0.80; Fig. 3c). The number of somatic muta-
tions acquired per year in mature white blood cells was similar to a 
recent report (20.2 versus 19.8; ref. 22).

For cross-validation of the single duplex mutations, we also  
performed CODEC WGS and targeted deep sequencing using newly 
created duplex sequencing libraries from buffy coat DNA of eight breast 
cancer patients. An average of 8.2% (range: 2.7–14.6%) of the mutations 
with their VAF down to 0.012% were observed again by sequencing them 
to a median of 2,311 (range: 225–6,970) duplex depth, implying that they 
were real somatic mutations (Extended Data Fig. 7a). We estimate that 
more could be found to be true somatic mutations at lower abundance 
if we were to sequence even deeper (Extended Data Fig. 7b).

We then used a similar cross-validation strategy to test if observing 
genome-wide CH from cfDNA is possible. Targeting the single duplex 
mutations detected by 4.3× (0.47–0.83× duplex depth) CODEC WGS 
on cfDNA of four healthy donors and four breast cancer patients, we 
performed deep duplex sequencing on matching buffy coat DNA to 
confirm their origin. On average, 4.6% and 9.5% of the single duplex 
mutations detected in cfDNA were also present in buffy coat DNA of 
healthy donors and patients, respectively, with their observed VAF 
as low as 0.0052% and the median duplex depth of 14,529 (range: 
11,174–16,567; Fig. 3d). Standard Illumina NGS with >100-fold higher 
residual mutation frequency would have resulted in only <0.05–0.1% 
of mutations targeted being true mutations. Trinucleotide context 
(TNC), that is, a mutation as well as their neighboring nucleotides, of 
the validated mutations was different for each individual except high 
peaks at C > T mutations at CpG as expected33 (Fig. 3e) with no errors 
specific to CODEC (Extended Data Fig. 7c). Our results suggest that 
CODEC could be uniquely capable of detecting rare somatic mutations 
in white blood cells and cfDNA such as those associated with CH using 
minimal sequencing.

Enhanced tumor mutation profiling
Given the ability to detect both high- and low-abundance mutations 
with fewer reads, we next sought to determine what impact this could 
have on cancer genome sequencing. To confirm that detecting tumor 
mutations with low-coverage WGS is possible with CODEC but not 
standard WGS, we compared them at 2× coverage by testing how well 
they detect mutations (VAF > 1%) established by deep standard WGS 
(60× coverage) paired with a variant caller, Mutect2 (ref. 34), on eight 
breast tumor samples. With higher accuracy, 2× CODEC (0.11–0.14× 
duplex depth) had 83 times higher fraction of SNV validated by deep 
standard WGS + Mutect2 than 2× standard WGS (Fig. 4a and Extended 
Data Fig. 8a), and increasing CODEC coverage improved sensitivity as 
expected (Fig. 4b). Of note, deep CODEC WGS did not outperform deep 
(for example, 60×) standard WGS in its sensitivity for high-abundance 
(for example, clonal) tumor mutations, which was expected, as this 
is driven mostly by NGS depth, not accuracy. That said, we saw high 
positive predictive values (PPVs) of mutations detected in single 
duplex reads from deep CODEC WGS, suggesting that single CODEC 
reads are accurate enough to detect true tumor mutations. To further 
explore this, we performed targeted resequencing of mutations identi-
fied exclusively in single duplexes of 2× CODEC WGS and found more 
than a quarter to be validated as true mutations (Fig. 4c). The portion 
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of mutations exclusively identified by CODEC showed VAF down to 
0.042%. In contrast, mutations that were also detected by Mutect2 were 
limited to VAF > 1%. These results suggest that low-coverage CODEC 
can detect rare mutations that cannot be discovered by standard WGS 
even with deep coverage.

We reasoned that such capability may enable analyzing mutation 
sequence contexts across the whole genome without deep sequenc-
ing. To test the idea, we compared CODEC and standard WGS with the 
single-fragment mutation caller to standard WGS with Mutect2 and 
investigated differences in TNC of mutations in a colon tumor sample 
with microsatellite instability (MSI). Analyzing all mutations from 
standard WGS (12× coverage) resulted in a different profile compared to 
selecting only mutations detected by Mutect2, suggested by low cosine 
similarity of 0.61 (Fig. 4d). In contrast, accepting all mutations from  
5× CODEC generated a profile similar to that of using high-abundance 
mutations with cosine similarity of 0.98. The same trend was consist-
ently observed at even lower CODEC sequencing coverages. When 
we compared mutation profiles between high-abundance mutations 
selected from standard WGS and its downsampled data, lowering 
coverage below 7× started to reduce cosine similarity (Fig. 4e). CODEC 
successfully maintained high cosine similarity over 0.9 (ref. 35) against 
high-abundance mutations down to 0.05×, reducing the sequencing 
coverage required by 140-fold, or reads by 105-fold, to acquire the same 
mutation profile. This implies that low-coverage CODEC identified both 
low- and high-abundance mutations reliably.

We then extracted Catalogue Of Somatic Mutations In Cancer 
(COSMIC) signatures36 from the mutation profiles of the MSI patient 
(Fig. 4f). CODEC detected not only both MSI signatures observed among 
high-abundance mutations selected by Mutect2 but also one more MSI 
signature, SBS21. Using all mutations from standard WGS canceled most 
of the MSI signatures. Signatures of mutations detected by CODEC but 
discarded by Mutect2 resembled those of all mutations from CODEC, 
suggesting that they were likely from real somatic mutations as well.

To test whether low-coverage CODEC could determine clinically 
significant tumor characteristics, we expanded the mutational signa-
ture analysis to eight breast cancer patients. Cosine similarity between 
mutation profiles of 2× CODEC and 60× standard WGS paired with 
Mutect2 again remained high, whereas that of 2× standard WGS did not 
(Fig. 4g). When the mutation profiles were further analyzed for COSMIC 
signature 3 that implies homologous recombination deficiency (HRD) 
status of a patient, which is a frequent driver of tumorigenesis37 and 
a predictive biomarker38, correlation between weights of signature 
3 among all signatures estimated by CODEC and Mutect2 resulted in 
Pearson’s coefficient = 0.91 (Fig. 4h and Extended Data Fig. 8b). This 
was higher than −0.12 from the same calculation using standard WGS. 
In addition, CODEC determined all positive and negative HRD statuses 
correctly, according to CHORD39 and Mutect2.

Another potential application of CODEC is tracking mutations of 
interest with fewer reads. To test how CODEC improves tumor mutation 
detection from liquid biopsy samples, we performed hybridization 
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capture with personalized, tumor-informed probe panels23 on both 
CODEC (median: 24 M raw read pairs) and duplex sequencing (median: 
52 M) libraries from four breast cancer patients’ cfDNA. Four patients 
with different tumor fractions showed up to a 100-fold reduction 
in read pairs needed to detect the tracked mutations (Fig. 4i and  
Supplementary Table 4).

Improved detection of MSI
Considering that CODEC WGS showed 290-fold lower residual indel 
frequencies than standard WGS (Extended Data Fig. 9) and that 
Illumina NGS is known to have an especially high indel error rate at 
DNA homopolymers, we explored if CODEC might improve MSI 
detection, which is an FDA-approved indication for immunotherapy  
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(anti-PD1/PDL1) but challenging to detect at low tumor fraction such 
as from liquid biopsies40. Indeed, CODEC WGS on NA12878 showed 
lower frequencies of both insertions and deletions at mononucleotide 
microsatellites than standard WGS (Fig. 5a). The fraction of CODEC 
reads with incorrect microsatellite lengths was 0.45%, which was  
12 times lower than that of standard WGS. Such lower frequencies were 
consistent with what was observed across mononucleotide microsatel-
lites of varied lengths from 8 to 18 nucleotides (Fig. 5b).

We then sequenced the MSI sample from the colon cancer patient 
and its matching normal sample to simulate MSI detection across dif-
ferent tumor fractions. When detecting MSI from an in silico dilution 
series, MSI score, which is a sum of probabilities of being an MSI site, 
of standard WGS paired with MSMuTect analysis41 met its baseline at 
0.1% (Fig. 5c). CODEC was at least ten times more sensitive than stand-
ard WGS with its MSI score higher than the baseline at 0.01%, implying 
that CODEC has potential for MSI detection at lower tumor fractions.

Discussion
By physically linking both strands of each DNA duplex, CODEC 
transforms standard NGS instruments into massively parallel single 
duplex sequencers. We first showed that CODEC is as accurate as 
duplex sequencing but with a much lower sequencing requirement. 
This enabled more precise genetic testing with substantially fewer 
reads while uncovering biologically significant mutations from  
single DNA molecules, which are ordinarily obscured in NGS. Moreover, 
the applicability of CODEC across major NGS workflows ranging from 
targeted sequencing to WGS sets it apart from other high-accuracy 
NGS methods, which are confined to certain sites of the genome or 
shallow duplex depth.

One current limitation of CODEC is that long DNA fragments (for 
example, >300 bp) can be difficult to sequence with existing Illumina 
instruments for two reasons. First, CODEC links both strands together, 
so the total length of a CODEC library molecule is over twice as long, and 
current Illumina systems cannot effectively cluster long DNA molecules 
(>1 kb). Second, existing Illumina read lengths vary up to 300 bp per 
read, but each Watson and Crick strand sequence must be read to form 
a consensus of both strands.

Because CODEC retools standard NGS using a distinct molecular 
structure, there may still be room for improvement in sequencing 

efficiency. For library construction, a new approach to attaching the 
adapter quadruplex instead of the standard NGS ligation chemistry 
used in this work could improve conversion into the correct struc-
ture. Applications involving hybridization capture could be further 
enhanced by achieving a higher on-target ratio. After one or two rounds 
of hybridization capture42 on cfDNA (Supplementary Table 1), mean 
on-target ratios of CODEC were 28.8% and 71.2%, respectively (89.0% 
and 99.2% for duplex sequencing), which we believe can be improved by 
using a longer hybridization blocker with locked nucleic acid like com-
mercial blockers for the CODEC linker. On the analysis side, a modified 
pipeline that treats byproducts as standard NGS data to supplement 
CODEC results may improve yields by reducing data loss.

CODEC could empower multiple facets of biomedical research and 
clinical diagnostic testing. One could apply CODEC to investigate rare 
biological events such as single-molecule mutations and mutational 
processes. CODEC could also reduce the cost of gene panel sequenc-
ing tests and enable broader swaths of the genome to be interrogated. 
Another promising area for CODEC is liquid biopsy testing, which often 
involves searching for low-abundance variants among large amounts 
of unmutated DNA.

As for whether CODEC could replace standard NGS for deep WGS, 
it is too early to conclude because there are no deep CODEC WGS data 
for a direct comparison. On one hand, CODEC WGS does not pres-
ently show higher sensitivity for high-abundance mutations that are 
ordinarily detected in deep (for example, 60×) standard WGS, but this 
was expected because the sensitivity for high-abundance mutations 
is mostly driven by NGS depth as opposed to accuracy. On the other 
hand, we have found high PPVs for CODEC single duplex reads, sug-
gesting that deep CODEC may be able to uncover further true muta-
tions, including those that are otherwise below the limit of detection 
of deep standard NGS. The challenge is that we currently lack a com-
plete ‘ground truth’ for all mutations, making this difficult to evaluate.  
Further studies are thus needed to investigate whether deep CODEC 
WGS achieves higher overall sensitivity for rare mutations over a wider 
and deeper range of allele frequencies.

In all, CODEC opens new frontiers for NGS testing by enabling more 
precise genetic analysis at lower cost, and deeper biological insights to 
be gleaned from NGS data with single DNA molecule resolution. This 
will usher in a new era of DNA sequencing that is not only inexpensive 
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but also accurate, which is of great potential value for biomedical 
research and the broader use of clinical diagnostics.
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Methods
Ethical approval, DNA samples and oligonucleotides
All patients provided written informed consent to allow the collection 
of blood and/or tumor tissue and the analysis of clinical and genetic 
data for research purposes. The IRB of the Dana-Farber Cancer Institute 
and New York University Grossman School of Medicine approved these 
protocols. This research was conducted in accordance with the provi-
sions of the Declaration of Helsinki and the U.S. Common Rule. Plasma 
from Dana-Farber Cancer Institute (DFCI) protocol 05–246 (breast 
cancer, patient 315)23 and 13–383 (TBCRC 030) (breast cancer, patients 
1–24) was derived from 20 cc whole blood in Streck tubes. Plasma from 
DFCI protocol 05–055 (breast cancer, patient 95)23 was derived from 10 
to 20 cc whole blood in EDTA tubes. Snap-frozen colon adenocarcinoma 
stage II/III and paired normal tissue biopsies from treatment-naïve 
patient (MSI, patient 19) were obtained from the Massachusetts General 
Hospital Tumor Bank, and gDNA was extracted using the Blood and 
Tissue kit (QIAGEN, 69556)40. The sperm sample was obtained as part 
of an IRB-approved human subjects protocol at New York University 
Grossman School of Medicine43 (Supplementary Text). We have a lim-
ited amount of patient samples that may not be shared.

NA12878 was purchased from Coriell (NA12878). Fresh whole 
blood (10–20 cc) from appropriately consented healthy donors was 
obtained through Research Blood Components. All DNA samples 
were stored in low TE buffer (10 mM Tris–HCl, 0.1 mM EDTA, pH 8) 
and were fragmented by Covaris ultrasonicator to have a mean size of 
150 bp except for cfDNA and ddBTP-blocked ER/AT. All CODEC adapter 
oligonucleotides were synthesized by Integrated DNA Technologies 
(IDT) and went through PAGE purification (Supplementary Table 5). 
The adapters for duplex sequencing were custom-ordered by the 
Broad Institute from IDT.

End-repair/dA-tailing
Unless noted otherwise, we used NEBNext Ultra II DNA Library Prep 
Kit for Illumina (NEB, E7103L) for ER/AT. Duplex-Repair32 consists of 
four steps. In step 1, DNA is treated with an enzyme cocktail consisting 
of EndoIV (NEB, M0304S), Fpg (NEB, M0240S), UDG (NEB, M0280S), 
T4 PDG (NEB, M0308S), EndoVIII (NEB, M0299S) and ExoVII (NEB, 
M0379S) in NEBuffer 2 in the presence of 0.05 µg µl−1 BSA at 37 °C for 
30 min. In step 2, T4 PNK (NEB, M0201S), T4 DNA polymerase (NEB, 
M0203S), 0.8 mM ATP and 0.5 mM dNTP mix are added into the step 1 
reaction mix and incubated at 37 °C for another 30 min. In step 3, HiFi 
Taq ligase (NEB, M0647S) and 10× HiFi Taq ligase buffer are spiked 
into the step 2 reaction mix and incubated on a thermal cycler that 
heats from 35 °C to 65 °C over the course of 45 min. The resulting prod-
ucts are purified by performing 3× AMPure XP (Beckman Coulter, 
A63882) cleanup. In step 4, the purified products are treated with 
Klenow fragment (3′–5′ exo-) (NEB, M0212L) and Taq DNA polymerase 
(NEB, M0273S) in NEBuffer 2 in the presence of 0.2 mM dATP at room 
temperature for 30 min followed by 65 °C for 30 min. We modified 
ddBTP-blocked ER/AT22 to start with fragmentation with HpyCH4V 
(NEB, R0620S) and AluI (NEB, R0137S; Extended Data Fig. 6b) in NEB 
CutSmart buffer at 37 °C for 15 min, purified with 2.5× AMPure XP beads. 
Fragmented DNA was dA-tailed in NEBuffer 4 with Klenow fragment and 
dATP/ddBTP (ddTTP, ddCTP and ddGTP) at 37 °C for 30 min.

CODEC
The CODEC adapter quadruplex was prepared by diluting four 100 µM 
oligonucleotides to 5 µM with low TE buffer and 100 mM NaCl, followed 
by heating at 85 °C for 3 min, cooling with −1 °C per min to 20 °C, and 
incubating at room temperature for 12 h. Mastercycler X50 (Eppendorf) 
and Axygen 0.2 ml Maxymum Recovery PCR tubes (Corning, PCR-
02-L-C) were used for the annealing. The annealed adapter complex 
was kept at −20 °C for future use. Input DNA for CODEC ranged from 
2.5 ng to 20 ng, although we observed the correct products with as little 
as 0.01 ng mass (Extended Data Fig. 10). We used NEBNext Ultra II DNA 

Library Prep Kit for Illumina and followed the manufacturer’s manual 
with several exceptions—(1) AMPure XP cleanup with 1.8× volume ratio 
was performed before the ligation step, followed by elution with 40 µl 
of low TE buffer (not included in CODEC v0 protocol; Supplementary 
Table 1); (2) ligation time was increased to 1 h, 5 µM adapter complex 
was diluted with adapter dilution buffer (10 mM Tris–HCl, 1 mM EDTA, 
10 mM NaCl, pH 8) to 500 nM before use and replaced NEB adapter; 
(3) 3 µl of 5′-deadenylase (NEB, M0331S) were added to ligation reac-
tion; (4) strand displacing extension (sample 40 µl, 10× buffer 10 µl, 
0.2 mM dNTP, polymerase 1 µl, nuclease-free water up to 100 µl) was 
performed with phi29 DNA polymerase (NEB, M0269L) at 30 °C for 
20 min, followed by 0.75× AMPure XP cleanup; (5) KAPA HiFi HotStart 
ReadyMix (Roche, 07958935001) and xGen Library Amplification 
Primer Mix (IDT, 1077677) were used for PCR by following the manual 
of KAPA Library Amplification Kit with 2 min of extension and (6) 0.65× 
AMPure XP cleanup was performed twice after the PCR. For cfDNA, the 
second cleanup followed the double-size selection protocol with 0.5× 
and 0.65× volume ratios.

Illumina libraries for standard NGS and duplex sequencing were 
prepared with KAPA HyperPrep Kit (Roche, 07962363001). All library 
preparations were performed on twin.tec PCR Plates LoBind 250 µl 
(Eppendorf, 0030129504). Library quantitation was performed with 
Qubit dsDNA HS kit (Invitrogen, Q33230) paired with Bioanalyzer DNA 
High Sensitivity chips (Agilent, 5067-4626).

Enrichment
All enrichment was performed with xGen Hybridization and Wash kits 
(IDT, 1072281) and xGen Blocking Oligos (IDT, 1075476), following the 
manufacturer’s manual except for the mass of input DNA, which was 
1000 ng. Some samples went through two rounds of capture (Sup-
plementary Table 1). xGen Pan-cancer Panel (IDT, 1056205) Custom 
WES panel was ordered by the Broad Institute from Twist Bioscience, 
and the other panels, including xGen Pan-cancer Panel (IDT, 1056205), 
were ordered from IDT.

Sequencing
Standard NGS and duplex sequencing were performed with Illumina 
HiSeq X (2 × 151 cycles) and NovaSeq 6000 (2 × 100, 2 × 151, or 2 × 250 
cycles). CODEC was performed with Illumina NovaSeq 6000 (2 × 166 
or 2 × 260 cycles).

Standard WGS tumor/normal data processing
We sequenced nine breast cancer tumors (fresh-frozen) with at least 
60× coverage and matched germline control with 15× coverage. Somatic 
SNVs and indels were called by aligning FASTQ files to HG19 using BWA44. 
The aligned reads were then processed by PICARD MarkDuplicate. After 
deduplication, the base quality scores were recalibrated by GATK 
BQSR45. Finally, the small variants were called using Mutect2 (ref. 34)  
from cloud using Terra (https://app.terra.bio/#workspaces/help- 
gatk/Somatic-SNVs-Indels-GATK4). We used all default parameters 
and are thus referred to as standard+Mutect2 mutations in this study.

CODEC data processing
Due to the unique CODEC read structure, we developed CODECsuite to 
process CODEC data (Supplementary Text). CODECsuite is written in 
C++14, R v4.1 and python v3.7, and we use Snakemake v7.3.8 (ref. 46) as 
the workflow management system. CODECsuite consists of three major 
steps: demultiplexing, adapter trimming and single-fragment mutation 
calling. The workflow also involves other standard tools such as BWA 
v0.7.17, Fgbio v2.0.2, GATK v4.3.0, Picard v2.27.1 and SAMtools v1.15.1 
(ref. 47). Illumina bcl2fastq was used to generate FASTQ files (with -R -o,  
no --sample-sheet because CODECsuite will demultiplex) but was not 
included in the suite. After demultiplexing and adapter removal, we 
mapped the raw reads using BWA against human reference hg19. Fgbio 
was then used to collapse the PCR duplicates. These final consensus 
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reads were then mapped to the reference genome using BWA again. 
An indel realignment step using GATK was added to the workflow of 
capture data but was excluded from the WGS workflow. The entire 
workflow and more details are available on the CODECsuite GitHub.

Duplex sequencing data processing
Fgbio was used to generate duplexes consensus and to filter the con-
sensus reads23,48. Read families with at least two copies of each strand 
were required for generating duplex consensus except for duplex 
sequencing WGS, which relaxed the requirement to one copy of each 
strand to get the best possible duplex recovery.

Residual SNV frequencies in capture sequencing
To identify residual SNVs, we mask all known germline and somatic 
mutations (for example, cancer mutations that are found in tumor 
sequencing and CH mutations confirmed by mutation validation). The 
duplex BAMs from both cfDNA and matched normal samples (from 
buffy coat) were generated in the same way and were applied to the 
same set of filters as follows: (1) no secondary and supplementary align-
ments; (2) Mapq ≥60; (3) Levenshtein distance (L-distance) between the 
reads excluding soft clipping and reference genome ≤5 and number of 
non-N-base L-distance ≤2 and (4) excluding bases within 12 bp distance 
from both fragment ends. To not confuse errors with real mutations, we 
precomputed the germline SNPs using GATK4 (HaplotypeCaller) from 
the duplex sequencing normal samples as they have a higher on-target 
ratio and hence coverage. For the patient sample, we found three 
somatic SNVs (median, VAF = 0.26; range, 0.24–0.28) in the captured 
regions (Supplementary Table 6) using Mutect2. Those somatic muta-
tions (patient sample only) and germline mutations were masked when 
calculating the residual SNV frequencies. In addition, we used duplex 
sequencing buffy coat samples to filter CH mutations. We found two 
CH mutations in both patient’s and healthy donor’s buffy coat samples. 
All of the CH mutations are found in KMT2C genes. These sites were 
also excluded when calculating the residual SNV frequencies. Finally, 
the specificity checks were performed on cfDNA samples to remove 
substitutions that may arise from alignment errors23,48.

CODEC single-fragment mutation caller
We call mutations from each read family. One read family corresponds 
to one unique DNA molecule. Bioinformatically, a read family is defined 
as a collection of pair-end reads with the same start, stop mapping 
positions and UMI sequences (if UMI is used). The number of read pairs 
(R1 + R2 count as one read pair) in the family is called family size. The 
duplex sequencing protocol requires at least two read pairs from each 
strand to form duplex consensus and thereby family size ≥4. Whereas, 
for CODEC, a single read pair is sufficient to form a duplex and thus 
family size ≥1. In this study, we also applied the CODEC single-fragment 
mutation caller to standard WGS when compared to CODEC data to 
control the impact from the analytical pipeline. The standard WGS is 
usually deduplicated, which means that a single read pair is selected as 
the primary alignment to represent the whole family when family size 
>1. In this case, CODEC single-fragment caller was applied to primary 
alignments.

The advantage of CODEC over duplex sequencing is that we can call 
mutations with high accuracy (Q70) from families of size 1. To achieve 
this, we need to select good clusters from the flow cell because the error 
rates of Illumina vary from surface to surface, tile to tile and cluster to 
cluster49. Thus, we implemented a few fragment-level and base-level 
filters (Supplementary Text).

For all patients, we sequenced matched peripheral blood cells to 
15× or greater depth to omit germline polymorphisms. When a germline 
bam is provided (in this study we used 10–15× WGS), we require (1) the 
SNV and indel should not be found in the germline bam. Because one 
indel can have many equivalent alignments, we require that the inter-
rogated indel is not found in a small window (default, 10 bp) of the 

germline bam. (2) At least five unique fragments cover the SNV or indel 
site in the germline bam. All of these thresholds are tunable param-
eters in the analysis pipeline. Using tighter thresholds can increase 
the precision but will also decrease the sensitivity. This allows users to 
customize based on their particular application. If no germline bam is 
available, the user should provide a germline VCF to mask the germline 
mutations. In this paper, we also used the gnomAD50 VCF to mask all 
common germline SNPs and indels (AF > 0.01%) to mitigate possible 
contamination22. When evaluating the CODEC NA12878 WGS, we used 
v3.3.2 GIAB NA12878 high confidence VCF and BED file as germline 
masks and evaluation regions, and no matched germline was used. For 
all other WGS analyses except for MSI calling, we used the GIAB V3.0 
easy regions (total 2.3B bases) to call mutations.

Germline SNV and small indel calling in downsampled WGS
We first downsampled CODEC and standard WGS NA12878 samples 
to 1–5× (step size 1×) mean coverages using GATK DownsampleSam. 
Then for CODEC data, we first removed all byproducts. Next, we ran 
GATK4.1.4.1 best practices pipeline via Cromwell and Terra workflow 
(available at web resources and computed on the Google Cloud Plat-
form). Note that the actual coverages used by GATK were thus lower 
for CODEC (0.6–3.0×) versus standard Illumina NGS. We used RTG 
vcfeval51 to calculate FP and FN for SNPs and indels (<50 bp) without 
penalizing genotyping errors (if heterozygous variants were called as 
homozygous and vice versa) using v3.3.2 high confidence VCF and BED 
file as input. We then calculated FP per million bases by normalizing 
against the high confidence region size and FN ratio by dividing FN by 
the total number of true variants.

Mutation validation
CODEC single-fragment mutation caller was used to call somatic SNV 
(SSNV) mutations from five breast cancer patients’ tumor WGS sam-
ples, eight breast cancer patients’ buffy coat WGS samples, four breast 
cancer patients’ cfDNA WGS samples and four healthy donors’ cfDNA 
WGS samples. Our in-house probe design pipeline23 was used to design 
probe sequences for hybrid capture of CODEC whole-genome SSNV. We 
created three sets of hybridization capture data for validation as fol-
lows: (1) CODEC SSNVs using duplex sequencing libraries constructed 
from the same samples that the SSNVs were derived, (2) SSNVs called 
from CODEC WGS on cfDNA in CODEC and duplex sequencing cfDNA 
libraries and (3) the same SSNVs as in (2) but starting with 500 ng of 
buffy coat DNA for library construction. Designed probes were pur-
chased from IDT and hybrid capture was performed with a 25× multi-
plicity DNA input of 6 µg. The numbers of probes/SSNVs in each case 
are included in Supplementary Table 1.

Mutation signatures analysis
The single-fragment mutations and highly abundant mutations called 
from Mutect2 were used as input for deconstructSigs52 to calculate 
residual mutation frequencies in the 96 TNC and to derive mutation sig-
natures. In brief, deconstructSigs is a reference-based approach, which 
finds a set of reference signatures S (for example, COSMIC signatures) 
that minimizes the sum-squared error between the reconstructed spec-
trum WS and the input spectrum T. deconstructSigs calls W the weight 
matrix. In other literature, W is more commonly called an exposure 
matrix. Because we are limited by the number of samples (sometimes 
only one sample), this reference-based approach is more appropriate 
than a de novo approach like SignatureAnalyzer53 or SigProfiler54. For 
MSI signatures, we used COSMIC V3.2 as the reference panel. While for 
the HRD signature (signature 3 in COSMIC V2 or SBS3 in COSMIC V3), we 
used COSMIC V2 as the reference panel as people have found signature 
3 in COSMIC V2 resembles the HRD signature generated in vivo more 
than the SBS3 in COSMIC V3 does55. To further improve signature 3 
detection in the breast cancer patient samples, we restricted to only 
breast-cancer-related signatures defined by HRDetect56. CHORD39 
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results on full coverage standard Illumina NGS were used to indicate 
the HRD status of the eight breast cancer patients. The plots of the 
96-TNC spectrum were generated by sigfit57.

MSI detection
The full-coverage CODEC consensus BAM and full-coverage standard 
WGS R1R2 consensus BAM on NA12878 were compared against each 
other to demonstrate CODEC ability to correct PCR stutter errors and 
thus to reduce background noise for MSI detection. MSIsensor-pro58 
was used to scan the hg19 for homopolymers of size 8–18 nt. Because 
MSIsensor-pro does not have mapping quality or secondary align-
ments filters, we prefiltered the BAM using SAMtools by requiring 
mapq ≥60 and no secondary or supplementary alignments. And then 
MSIsensor-pro was used again to count the number of reads that  
support different lengths of homopolymer at those preselected sites. We 
removed any homopolymer sites that overlap or are in proximity (±5 bp)  
with any germline variants. After that, the reference lengths of the 
homopolymer sites were considered true lengths, and observed length 
distributions from reads were compared against them.

We resequenced an MSI-H tumor sample and the matched adjacent 
normal sample from a colorectal cancer patient using both CODEC (5×) 
and standard Illumina NGS (12×). Previous study40 has found the tumor 
purity to be 66%. We, therefore, in silico mixed the reads from MSI 
samples and reads from the normal samples for CODEC and standard 
NGS separately to mimic a dilution series of tumor purities from 66% to 
0.01% at a depth of 2× at each dilution point. We developed an MSI caller 
called CODEC-MSI, which uses a Bayesian Genotype Quality model to 
calculate a posterior probability of being MSI site for each locus of 
interest (Supplementary Text). Because it uses a tumor-normal pair, 
we split the normal samples into two halves and no reads were shared 
between the two splits. One of the splits was used for the mixing and 
the other was used as the normal input of the tumor-normal pair for 
CODEC-MSI. The pure normal samples were indicated as 0% in Fig. 5c. 
The MSI scores of the standard WGS were calculated by MSMutect41, 
which are also a sum of per-site MSI scores.

Statistics and reproducibility
The sample size was determined by the availability of tissue and the cost 
of the experiment. No statistical method was used to predetermine the 
sample size. The experiments were not randomized. The investigators 
were not blinded to allocation during experiments and outcome assess-
ment. All statistical analyses in this work can be reproduced by codes 
on our GitHub repository (https://doi.org/10.5281/zenodo.7705860).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
DNA sequencing data and results generated for this study such as 
Mutect2 MAF files will be available from dbGaP under accession code 
phs003255.v1.p1. NA12878 PacBio data was downloaded from GIAB 
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ 
NA12878/PacBio_SequelII_CCS_11kb/.

Code availability
Code required to reproduce the analyses in this paper is avail-
able online. CODECsuite is available at https://doi.org/10.5281/ 
zenodo.7705860 and https://github.com/broadinstitute/CODECsuite,  
which also contains the end-to-end Snakemake workflow and code for 
CODEC-MSI. Other software used includes bcl2fastq (v2.20, https:// 
support.illumina.com/downloads/bcl2fastq-conversion-software- 
v2-20.html); BWA (v0.7.17); SAMtools (1.15.1); GATK (4.3.0, https:// 
github.com/broadinstitute/gatk); FGBIO (v2.0.2, https://github.com/ 
fulcrumgenomics/fgbio); Picard (v2.27.1, http://broadinstitute.github. 

io/picard/); Snakemake (v7.3.8); GATK HaplotypeCaller germline  
calling best-practice (v4.1.4.1, https://app.terra.bio/#workspaces/ 
warp-pipelines/Whole-Genome-Analysis-Pipeline); GATK somatic  
calling best-practice (4.1.7.0, https://gatk.broadinstitute.org/hc/ 
en-us/articles/360035894731-Somatic-short-variant-discovery-SNVs- 
Indels-); Sigfit (v2.2); DeconstructSigs (v1.9.0); R (v4.1); Python (v3.7);  
ggplot2 (v3.3.5); tidyverse (v1.3.1); data.table (v1.14.2); Pandas (v1.3.3);  
Pysam (v0.16); seaborn (v0.11.2). HRDetect’s breast cancer signature  
set is available at https://github.com/Nik-Zainal-Group/signature. 
tools.lib#examplese01.
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Extended Data Fig. 1 | Design principle of CODEC adapter quadruplex. 
(a) Predicted hybridization yield of the double-stranded regions with 
oligonucleotide concentrations of 500 nM at 20 °C and [Na+] = 10 mM. (b) The 
length of single-stranded linkers was determined to mitigate bending stiffness 
of a target duplex. Duplexes with up to 174 bp can be accommodated without 
bending at all, which was calculated using the lengths of DNA in B-DNA helix 
and single-stranded structure. Approximately, it is 0.33 nm per base pair along 
the helical axis of B-DNA and 0.64 nm per nucleotide for single-stranded DNA. 
We excluded 3 nucleotides from each single-stranded region, which is the 
minimum length of a hairpin loop. (c) Read primer binding sites of standard NGS 
and CODEC. (d) During Illumina cluster generation cycles, early termination 
in the middle of the insert region could create byproducts which turn into 
shorter fragments with only one insert. If a read primer binding site is located 

at the end of a fragment, unlike CODEC, these subclonal fragments cause mixed 
fluorescence after sequencing cycles pass the shared region, and consequently, 
low Quality Scores. (e) Mean Quality Scores of each sequencing cycle by taking 
42 bp before and after the shared region from random 100 read pairs. Before 
redesigning the adapter structure, Quality Scores suddenly dropped after the 
shared region. This issue was solved by moving the read primer binding regions 
to the linker to ‘silence’ all byproducts without the linker. (f) UMIs and each set 
of four sample indices are designed to collectively include all four bases at each 
base position while keeping similar hybridization ∆G° for high-quality image 
analysis of Illumina sequencers. For example, Illumina software uses up to first 
25 bp for various purposes such as cluster identification, phasing correction, and 
chastity filter.
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Extended Data Fig. 2 | Byproduct analysis. (a) Ratios of the correct CODEC 
product and byproducts which have been named after how they were likely 
created. (b) Expected mechanisms of byproduct formation. ‘Double ligation’ 
can occur when two adapter complexes are ligated to each end of an insert 
and go through T/T mismatched ligation with each other, as opposed to A/T 
ligation. ‘Blank ligation’ can occur when one or two adapter complexes go 
through T/T mismatched ligation with no insert. ‘Intermolecular’ can occur 
when polymerase extension uses another ligation product as a template instead 
of the opposite strand. (c) Cumulative fraction of sequencing coverage based 
on byproducts and the correct product reads. Their similarity implies that 
byproducts were randomly generated. (d) Medians of reads allocated to 300 bp 
windows grouped by their GC contents (top row) and their observed/expected 

ratios (bottom row). Shorter lengths of byproducts may have mitigated GC 
bias of polymerases. Center lines, boxes, and whiskers indicate medians, 25% 
and 75% percentiles, and 5% and 95% percentiles, respectively. (e) The ratio of 
GC-corrected read counts per 50 kb bin, normalized by the LOESS-fitted (by 
GC) chromosome-wide mean value. CODEC byproducts and standard NGS 
reads from NA12878 gDNA were analyzed by ichorCNA. CODEC byproducts 
showed lower normalized values than standard NGS, suggesting that there were 
no particular genomic regions with higher fractions of byproducts. (f) Correct 
product ratio and percentage of bases that passed all analysis filters vs. mean 
insert size of each library. Bases in byproducts were counted towards total 
bases, but not towards post-filtered bases.
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frequency per base context of targeted deep sequencing with the pan-cancer 
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(c) The effect of relaxing the threshold of duplex sequencing from two reads of 
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as Fig. 2a, b. Schmitt et al.20. and Abascal et al.22. required three and two reads of 
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Extended Data Fig. 6 | Details of suppressing errors at the end of DNA 
fragments before CODEC. (a) Residual SNVs and their distances from fragment 
ends. This examples shows NGS data of a healthy donor after hybridization 
capture with the pan-cancer panel. We discard mutations within the last 12 bp 
from either end. (b) Theoretical fragment size distributions after double 
digestion with blunting restriction enzymes. Covered percentages show how 
much of human genome will turn into fragments with the size between 100 and 

400 bp. The combination of HpyCH4V and AluI was selected for ddBTP-blocked 
ER/AT for Fig. 2e. (c) Residual SNV frequencies of CODEC paired with ddBTP-
blocked ER/AT. Only using reads with a family size of one resulted in statistically 
the same SNV frequencies, confirming that a single read-pair is equally accurate. 
Data points and error bars indicate mean values and 95% binomial confidence 
intervals by Wilson method, respectively.
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targeted deep sequencing using newly created duplex sequencing libraries 
from the same samples. Observed ratios show how much of mutations were 
observed again from the independent libraries. Center lines, boxes, and 
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respectively. (b) Theoretical probability of the cross-validation based on the 
binomial distribution. Because sampling a rare mutation in a biological sample 
is stochastic, somatic mutations with lower VAF are less likely to be validated. 
Considering most somatic mutations in buffy coat DNA aren’t under positive 
selection pressure and have low VAF, only a subset of mutations identified 

by CODEC WGS will be sampled again for the independent libraries. (c) To 
investigate whether CODEC contributed to any new errors, we analyzed the 
trinucleotide error contexts of CODEC and duplex sequencing libraries from 
the same individuals in Fig. 3d. For duplex sequencing, hybridization capture 
data were used to acquire enough mutations for the analysis. After excluding 
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sequencing had 3,992 and 204 mutations, respectively. One sample with high 
subclonality was also removed. The four highest peaks in each figure were 
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deamination of cytosines, were 24.2% and 19.7% for CODEC and duplex 
sequencing, respectively.
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Extended Data Fig. 10 | CODEC with lower input masses. Three different 
concentrations of adapter were tested for 0.1 and 0.01 ng input mass. We used 
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resulted in distinct sizes between the correct product and byproducts. To 
estimate the ratios of the correct product, we measured the concentration of 
each peak with Bioanalyzer 2100 and High Sensitivity DNA Chip.
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