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DNA-based copy number analysis confirms genomic evolution

of PDX models

Anna C. H. Hoge1'6, Michal Getz*®, Anat Zimmer', Minjeong Ko', Linoy Raz?, Rameen Beroukhim®*°, Todd R. Golub®*3,

Gavin Ha@®'® and Uri Ben David (3™

Genomic evolution of patient-derived xenografts (PDXs) may lead to their gradual divergence away of their tumors of origin. We
previously reported the genomic evolution of the copy number (CN) landscapes of PDXs during their engraftment and passaging'.
However, whether PDX models are highly stable throughout passaging?, or can evolve CNAs rapidly'3, remains controversial. Here,
we reassess the genomic evolution of PDXs using DNA-based CN profiles. We find strong evidence for genomic evolution in the
DNA-based PDX data: a median of ~10% of the genome is differentially altered between matched primary tumors (PTs) and PDXs
across cohorts (range, 0% to 73% across all models). In 24% of the matched PT-PDX samples, over a quarter of the genome is

differentially affected by CN alterations. Moreover, in matched analyses of PTs and their derived PDXs at multiple passages, later-
passage PDXs are significantly less similar to their parental PTs than earlier-passage PDXs, indicative of genomic divergence. We
conclude that PDX models indeed evolve throughout their derivation and propagation, and that the phenotypic consequences of
this evolution ought to be assessed in order to determine its relevance to the proper application of these valuable cancer models.
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Genomic evolution refers to the genetic alteration of the tumor
genome over time, including selection or de novo acquisition of
genetic aberrations, and can occur in the context of clonal
expansion due to selection or genetic drift'. Copy number
alterations (CNAs) are hallmark genomic structural aberrations in
many epithelial cancers, and have been shown to associate with
tumor progression and treatment resistance®. The CNA land-
scapes of patient-derived xenograft (PDX) tumors have been
shown to evolve during engraftment and passaging*~’, although
their interpretation is still being debated, and thus more careful
and systematic evaluation is required.

We have previously analyzed copy number (CN) profiles of PDX
samples from various passages and cancer types*. We found the
overall correlation of CN landscapes between PTs and PDXs, and
that between related PDXs, to be very high (Pearson’s r = 0.79 for
the median CN correlation between PDXs and their respective
TCGA tumor type). However, at the individual tumor level, we
found that a median of 12.3% of the genome was differentially
altered within four passages of PDX models (range, 0% to 59%).
Consistent with these results, several recent papers have also
reported genomic evolution throughout the engraftment and
passaging of PDXs®®'6, The degree of genomic evolution
observed in PDXs was similar to that observed by us and others
in patient-derived in vitro models (cell lines'” and organoids'®),
highlighting the importance of this phenomenon to cancer
modeling (reviewed in'®).

Recently, an international consortium led the assembly of CN
profiles for 1,451 samples corresponding to 509 PDX models. CN
profiles were evaluated using several methods, including SNP
arrays, whole exome (WES) and genome (WGS) sequencing, and
RNAseq. To assess the similarity between PTs, early-passage PDXs
and later-passage PDXs, the study mostly relied on a Pearson’s
correlation analysis of the logy(CN ratio) values across the

genome, reporting high correlations between the CN profiles of
PTs and PDXs (median correlation PT-PDX = 0.950), and between
matched pairs of PDXs from different passages (median correla-
tion PDX-PDX = 0.964). Furthermore, the authors reported that the
CN profiles remained highly stable throughout in vivo passaging,
so that high-passage PDX models represented the CN landscapes
of the PTs and of the early-passage PDXs. No recurrent alterations
of a specific locus, gene or pathway during PDX engraftment or
passaging was reported, which was interpreted as evidence for
lack of selection. Based on these results, the authors suggested
that the genomic evolution previously observed in PDXs might
have been an artifact of inaccurate expression-based CN profiling.

To investigate the apparent discrepancies between the results
in these studies, we re-analyzed the CN data from the Woo dataset
of 1,451 PDX samples®. We initially focused only on DNA-based
(SNP arrays, WES, and WGS) CN profiles to avoid any potential
issues with expression-based CN inference. In the Woo dataset,
this included 33 cohorts of PDX models representing 16 cancer
types, each with at least one pair of matched samples that had
high-quality DNA-based CN calls>. We divided the genome into
bins of 1 Mb length, and evaluated the discordance of each bin
between PTs and PDXs, using conservative thresholds for
‘discordance’ (Methods). As an alternative approach, we predicted
integer CN using ichorCNA2°, which explicitly accounts for tumor
impurity in the primary tumors and potential mouse contamina-
tion in the PDX samples, and focused downstream analysis on
clonal events to allow for a conservative discordance comparison.
For both approaches, we computed the percentage of the
genome that showed discordance based on copy number calls,
rather than the Pearson'’s correlation of the normalized CN values
(Supplementary Fig. 1a; Methods). Using both approaches, the
absolute number of CN alterations and the fraction of the genome
affected by them were not significantly different between PTs and
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their matched PDXs (Supplementary Fig. 1b,c), in line with recent
studies*~°.

Next, the fraction of the genome discordant between two
samples was defined for each PDX model. We also evaluated the
number of discordant chromosome-arm CNAs in order to assess
the contribution of aneuploidy to copy number evolution. A
chromosome arm was defined as discordant if >=75% of the bins
within that arm were discordant (Methods). Samples with <5% of
the genome affected by CNAs were excluded from the analysis to
avoid inflated discordance due to tumor impurity, and only weak
correlation was observed between estimated tumor purity and
genomic divergence in the remaining samples (Supplementary
Fig. 2). The per-sample discordance values were very similar, but
not identical, between the two analyses (Pearson’s r=0.7; p=
3x107%), demonstrating that they were highly consistent but not
completely redundant (Supplementary Fig. 3). The use of copy-
number calls to directly compare the CNA landscapes of matched
samples is commonly applied in cancer genomics studies to assess
CN evolution because the results are readily interpretable, and it
allows for a direct comparison to previous studies using similar
approaches (see Methods).

We found that a median of 10.23% (range, 1.17-19.65%; mean
of 15.03%) of the genome was differentially altered between
matched PTs and PDXs across cohorts (Fig. 1a and Supplementary
Data 1). Considering all PDX models from all cohorts together, a
median of 10.95% (range 0-73.26%; mean of 15.56%) was
differentially altered. Overall, over 25% of the genome was
differentially affected by CN alterations in about a quarter (24.1%)
of the matched PT-PDX samples (Fig. 1b and Supplementary Data
1). Many of the discordances were due to chromosome-arm
aberrations that were present in only one of the paired samples: a
median of 2 arm-level CN changes was differentially called
between PTs and PDXs across cohorts (range, O to 4; mean of 3.40;
Fig. 1¢). The ichorCNA results showed similar discordance values
with a median of 7.71% discordance (range 0.33-51.48%; mean of
15.41%; Supplementary Fig. 4a and Supplementary Data 2), 2 arm-
level CN changes (range 0-10; mean 3.42; Supplementary Fig. 4b),
and over 25% of the genome differentially affected by CN
alterations in 21.4% of the matched samples (Supplementary Fig.
4¢). Slightly higher discordance values were observed when the
analysis was repeated without excluding low-purity samples
(Supplementary Fig. 5). Therefore, although high overall correla-
tions were observed between CN profiles of matched PTs and
PDXs, such correlation values mask considerable differences
between matched samples. Notable examples are shown in Fig.
1d and Supplementary Fig. 4d. Of note, the instability of the PDX
models was positively correlated with the degree of CN changes
observed in the PTs (Pearson’s r = 0.263, p = 1.3x10~% Fig. 1e), in
line with the strong association between CN heterogeneity and
genomic/chromosomal instability, previously demonstrated in
both clinical samples and cancer models®#21,

These findings demonstrate that the different magnitudes of
PT-PDX discordance reported by previous studies are not due to
the use of different platforms for CN calling, but rather due to
different definitions of ‘concordance’ and ‘discordance’. To further
assess this issue, we analyzed the RNA-based CN calls from the
Woo dataset, which included a cohort of hepatocarcinomas and a
cohort of gastric tumors. The discordance between the PTs and
PDXs in these cohorts was highly similar to that in the HCC and
gastric cohorts assessed by SNP and WES, respectively, both in a
thresholds-based analysis and in an ichorCNA analysis (Supple-
mentary Fig. 6). Interestingly, both DNA- and RNA-based analyses
placed the HCC cohort as the least discordant cohort and the
gastric cohort as the second most discordant cohort. These results
further confirm that RNA data can be used to assess CN evolution
of PDXs, and that the disagreement between previous studies did
not stem from the platforms used for CN calling.
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A key question is whether genomic evolution with successive
passaging leads to PDX diversification away from the genomic
structure of primary tumors. Using our measures for CN
discordance, we find that the CN discordance between matched
pairs of PDXs significantly increases with passaging. In other
words, the higher the passage difference, the more discordant
matched samples are (Fig. 2a and Supplementary Fig. 4e). Notably,
the BCM breast cancer cohort is composed of pairs of PDXs 17 to
21 passages apart, the highest passage differences in the entire
Woo dataset; by our analysis, this cohort also has the highest
median discordance between paired PDXs of any cohort (median,
10.79%; range, 5.61-36.60%; mean, 13.3%). Importantly, however,
large differences can also accumulate within few passages, as seen
in the EuroPDX colorectal cancer PDX cohort. In both cases, many
of the genomic differences involve aneuploidy (i.e., chromosome-
arm or whole-chromosome alterations; Fig. 2b,c, Supplementary
Fig. 7a and Supplementary Data 1 and 2). Moreover, in cohorts
that include ‘trios’ of a PT and a PDX model evaluated at two
different passages, the discordance between PTs and later-
passage PDXs was significantly higher than that between PTs
and earlier-passage PDXs (p =0.0003 and p =0.0007, one-sided
Wilcoxon signed-rank test; for the breast and colon cohorts,
respectively; Fig. 2d and Supplementary Fig. 7b).

We note that our pancancer analysis is not controlled for
passage number, which can vary considerably between PDX
cohorts (Supplementary Data 1). To assess the extent of genetic
changes occurring within a single passage, we therefore analyzed
the genomic differences between P1 and PO PDXs. Across all
cohorts, a median of 4.71% (range, 0.093-10.50%; mean, 7.86%) of
the genome was altered between PO and P1 of the PDX models
(Fig. 2e and Supplementary Fig. 8). This is also consistent with our
previous observation that genomic evolution is particularly
extensive within the first few PDX passages®. These findings
provide evidence for a gradual genetic diversification of PDXs
throughout their engraftment and passaging.

In our previous study, we did not identify specific CNAs that
were selected for in the PDX models* due to a limited number of
samples when controlling for tumor type. We confirmed that the
sample sizes in the Woo dataset are not statistically powered
(Type Il Error <80%) to detect a 10% CNA prevalence decrease for
nearly all (96%) of the TCGA-recurrent aneuploidies (Supplemen-
tary Fig. 9). Therefore, the ability to identify specific recurrent
mouse-induced CNAs and the presence or absence of selection
will require much larger cohorts. We nonetheless analyzed the
genomic regions affected by CN, using two approaches. First, we
performed a gene-level prevalence analysis in each tumor type.
The prevalence of gene-level CN discordance was computed for
all the genes that reside within discordant regions (between PTs
and PDXs, and between early-passage and late-passaged PDXs)
and gene set enrichment analysis (ssGSEA) was performed. We did
not observe any consistently enriched or depleted pathways
shared by all cohorts. However, significant enrichments were
observed in specific tumor types (Supplementary Fig. 10a,b and
Supplementary Data 3). For example, in several tumor types the
CNAs that differed between early and later PDX passages were
enriched for genes associated with immune-response-related
pathways (Supplementary Fig. 10b and Supplementary Data 3).
Next, we curated a list of cancer genes from the COSMIC Cancer
Gene Census database?? and examined the prevalence of their
CNA discordance in each tumor type (comparing PTs vs. PDXs, and
early-passage vs. late-passage PDXs). Overall, 22.7% of the cancer
genes resided in regions that were discordant between PTs and
PDXs in >20% of the tumors (Supplementary Fig. 10c), and ~42.3%
of the genes resided in CNAs that differed between early and later
PDXs in >10% of the tumors (Supplementary Fig. 10d, Supple-
mentary Data 4). The number of genes within commonly
discordant CNAs varied considerably across cohorts: whereas in
some cohorts (e.g., pdmr_wes_renal) no cancer genes recurrently

Published in partnership with The Hormel Institute, University of Minnesota



ACH Hoge et al. np]

a b

PT vs. PDX

- - 1.00
- Median of medians: 10.23%
S 604  Mean of means: 15.03% 4]
3 =
<4 ©
¥ g |\
.r;@’ 50 x 0.75 \
o o
g 40 I~ \
2 0 050
[ Y
@ 30 S) \
5 § N
& 201 G 0.25 0.241
8 ® \
C — I
8 10 = * [N
[} |
o 0.00 !
0= I
0 25 50 75 100
<\°° béaeéo&o \Qo \@ go@ aq;e\e?,& \06 &9\0@ ‘)‘o 0@'0 & %@0 Percentage of Genome Discordant
(\Q/ 3 &2 o %/ Q7 o 787 P 27 r& &
PSS GCHE e}g/(\Q/ W& R o o
é@e \‘; @Q& 27, 6“ 6“/ \,5!- o\/K\o\/gbc‘ z><°‘§>°°/q°+/<‘@é>“(\¢;‘“
@ Q \o $7 W0 S
& < < D “‘.\,bw
= PT vs. PDX CRC51 (EuroPDX_WGS Colorectal Cancer)
3 Median of medians: 2.00 2 g
§ 144 Mean of means: 3.40 1 A — _
2 o o R T e e e O i A R R B —
a 124 = 00— — L= = PT
(o)
z 19 S 2 - 10%
[0} . — T —
E 8y a8 O e A MU DS U N U S e b BRI 15%
2 E o— — r — P1
£ 6 z
S > L
c | Q 2 . 9%
o 4 ~ -
5 ° |- i
| B IS S NS S Sl M
E of— -1 F
=)
b4 — \L 1 2 3 4 5 6 7 8 9 10 11 12 13 14151617 19 2
& P \v@ szf" @‘9 \o%"(béb‘?' \g\\q s 5} & 00<\\ w~\° «0"’ gé\c‘ Chromosome 1820 22
%‘\Q;Q?\\%@% s qx"f“‘;?\ q@%/&v S &P «“”6/@?/@69
$7 o7 @ 27 G N
Fo? «‘*&““ & \7’6@0"&\;«?“ %W@Q c‘b“:;/ °q°‘°‘o<2¢ o7
Q&Q < Qb \’5"/
e BC325 (EuroPDX_WGS Breast Cancer)
2
1
£ 100 Pearson’s r = 0.263 o o - i -
S p=1.3x10% s T T
§ §-1 —— = — : o
2 75 . 2 2 1%
gg . é 1 _ |l A 14%
20 501 S OpF——7t—— —— - = e e ——— = P1
o » z
o> E -1 i — — — = :
B 82 s
%V 25 1 J
@ — — - S 7
k= 0O —_— e iP5 d
@ - . ]
g 0+ -1 - = , — . —_ i | .
o 000 055 050 055 100 1 2 3 4 5 6 7 8 9 10 1 12 13 14151617 19 2
Chromosome 18 20 22

Fraction of Genome Altered in PT

Fig. 1 Thresholds-based comparison of the copy number landscapes of PTs and PDXs. a A cross-cohort comparison of the percent of the
genome that is discordant between matched PT-PDX samples. In the median cohort, a median of 10.23% of the genome is altered between
PTs and PDXs. Bar, median; colored rectangle, 25th to 75th percentile; whiskers, Q1 - 1.5*IQR to Q3 + 1.5*IQR; outliers were excluded from the
plot. b A reverse estimator of cumulative distribution function (1 - eCDF) plot showing the fraction of PT-PDX pairs in which over a given
percentage of the genome is discordant. Over 25% of the genome was discordant in 24.1% of the matched PT-PDX samples. ¢ A cross-cohort
comparison of the number of chromosome arms that are discordant between matched PT-PDX samples. A median of 2 chromosome arms are
altered between PTs and PDXs across cohorts. Bar, median; colored rectangle, 25th to 75th percentile; whiskers, Q1 — 1.5*IQR to Q3 + 1.5*IQR;
outliers were excluded from the plot. d Examples of CN differences between matched PT, an earlier-passage (P1) PDX, and later-passage (P4,
P5) PDX samples from the EuroPDX_WGS colorectal and breast cancer cohorts. Red, CN gain; blue, CN loss. Prominent differences are
highlighted with a light blue background. The fraction of the genome that is altered between samples is shown to the right of the plot. e A
scatter plot presenting the correlation between the fraction of the genome affected by CN in the PT and the discordance between that PT and
its derived PDX. In general, the more affected by CN a tumor is, the more divergent its PDX is (Pearson’s r=0.26; p=1.3 x 107%.
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Fig.2 Thresholds-based comparison of the copy number landscapes of PDXs at different passages. a A comparison of the percent of the
genome that is discordant between matched samples of PDXs with a low (1-2), intermediate (3-5) or high (>=6) passage difference between
them. The discordance increases with passage difference. P values obtained by Mann-Whitney U test. Circles, individual pairs. b, ¢ Examples of
the CN differences between matched early passage and late passage PDX samples from the EuroPDX_WGS colorectal and breast cancer
cohorts. Red, CN gain; blue, CN loss. Prominent differences are highlighted with a light blue background. The fraction of the genome that is
altered between samples is shown to the right of the plot. d A comparison of the percent of the genome that is discordant between PTs vs.
earlier-passage PDXs and PTs vs. later-passage PDXs, in breast and colorectal cancer cohorts that included matched ‘trios’ of PT and PDXs from
two passages. P-values obtained by a one-sided Wilcoxon signed-rank test. Bar, median; colored rectangle, 25th to 75th percentile; whiskers,
Q1 - 1.5*IQR to Q3 + 1.5*IQR; outliers were excluded from the plot Circles, individual pairs. e A cross-cohort comparison of the percent of the
genome that is discordant between matched samples of PDXs at passage 0 and passage 1. A median of 4.71% of the genome is altered
between PO and P1 across cohorts. Bar, median; colored rectangle, 25th to 75th percentile; whiskers, Q1 - 1.5*IQR to Q3 + 1.5*IQR; outliers

were excluded from the plot.

differed between PTs and PDXs, in other cohorts (e.g. euro-
pdx_wgs_brca) a large fraction of the cancer genes did recurrently
differ (Supplementary Fig. 11 and Supplementary Data 4). We
identified 90 genes that were commonly discordant (in >25% of
the PT-PDX pairs) in = 5 tumor cohorts (Supplementary Fig. 12 and
Supplementary Data 4), including common oncogenes such as
BRAF and BCL2. While strictly correlative, these findings suggest
that the CNAs arising during model evolution have the potential
to alter important biological pathways.

Importantly, clonal selection may not necessarily involve
recurrent events. When the same PT is transplanted into different
mice, the ‘sibling’ PDX models tend to acquire the same CNAs,
indicating positive selection®. Moreover, the rate of CN evolution
in PDXs is strongly correlated with the intra-tumor heterogeneity
of the primary tumor types?, which is also supported by
observations that the CN differences between PTs and PDXs are

npj Precision Oncology (2022) 30

similar to the CN differences across multi-region tumor samples>.
We note that the observation that PDX genomic evolution is
largely driven by spatial heterogeneity by no means diminishes its
potential consequences; PDX evolution due to spatial hetero-
geneity could still lead to considerable differences between PTs
and their derived PDXs, which could potentially reduce the utility
of such divergent models. Importantly, the finding that the later
passage PDXs are significantly less similar to their matched PTs
than the earlier passage PDXs cannot be explained by the spatial
heterogeneity within the PT.

Our analysis underestimates the genomic diversification of PDX
models. First, high-level amplification or deep deletions are not
considered as changes compared to single copy gains or losses of
the same regions. Second, our analysis is blind to copy-neutral
LOH events. Third, whole-genome duplication events, single-
nucleotide alterations (SNVs) and structural alterations (SVs) are

Published in partnership with The Hormel Institute, University of Minnesota



not considered either. Therefore, our results provide a conserva-
tive estimate of the minimum fraction of the genome that is
actually altered throughout PDX engraftment and passaging.
Interestingly, our results are in full agreement with a recent study
that analyzed the evolution of 536 PDX models, focusing on SNVs,
SVs and gene-level LOH events, which reported ~10% discordance
in key driver mutations between PTs and their matched PDXs®.
Importantly, the rate of PDX evolution that we observe is also
similar to that seen in cancer cell lines, and is significantly
associated with the stability of the tumor of origin (Fig. 1e;
reviewed in'). Therefore, PDXs are subjected to the same
evolutionary processes that act on the native tumor and on
alternative tumor models, but the specific selection pressures
would be context-dependent. We note that some PDX models
may indeed have highly stable CN profiles, but our data suggest
that it is important to validate this in order to correctly interpret
experimental results obtained using PDX models.

In summary, our analysis of CN profiles from PDXs reconciles the
apparent contradictions previously reported, constituting a DNA-
based validation of PDX genomic evolution. Importantly, the
disagreement between previous studies is not a matter of the
platform used for CN calling, but was largely driven by different
methods of data analysis and interpretation (including the exact
CN evaluation methods). Ultimately, the data from the three
recent large-scale studies (Ben-David et al, Woo et al, and Sun
et al.) are highly consistent, documenting on average 10-20% CN
discordance between PTs and PDXs, and revealing ongoing
diversification of CN landscapes throughout model propagation.
The source of this diversification is probably a combination of
subclonal dynamics and ongoing genomic instability (reviewed
in'®). Important questions remain, however, with regard to the
functional consequences of this phenomenon: Is it alarming or
negligible that >10% of the genome is different between PTs and
PDXs, that these CN alterations often include chromosome-arm
gains and losses, and that the genomic similarity of PDXs to their
PT of origin decreases over time? How do such changes affect the
phenotypic stability of the models, and their ability to serve as
accurate ‘tumor avatars'? Addressing these questions directly and
systematically is important for optimizing the use of these unique
and valuable cancer models.

METHODS
PDX dataset and preprocessing

Segments of log,(CN ratio) values across the genome for both PT and PDX
samples were acquired directly from the supplementary tables in the Woo
et al.® study. The log,(CN ratio) values for segmented data were generated
for various platforms; details are provided in the Woo, et al study. In short,
the log, ratio value for each data point i was defined as

log, (ratio) = Iog{(eiif}) =6 m

where 6; is the normalized intensity or read count and 6, is the
normalized (average) value for normal or reference sample(s), depending
on the platform. Segmentation algorithms applied to these data points by
Woo et al. resulted in segments used as input in this current study and for
each segment s, the

log, (CN ratio) = " 6. @)

ies

Samples whose CN profiles had been estimated from SNP arrays, whole-
exome sequencing data, and low-pass whole-genome sequencing data
were included, while samples whose profiles had been estimated from
RNA-sequencing and gene expression microarray data were excluded, to
avoid potential issues with expression-based CN inference. The final
dataset consisted of 1,429 samples across 33 cohorts containing at least
one pair of matched samples.

In the Woo et al. study, the authors divided the genome into equal-sized
100 kB bins, assigned the log,(CN ratio) of the overlapping segment at
each bin, and compared the log,(CN ratio) values of the bins between pairs
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of samples using a Pearson correlation (without copy number
determination).

For this current study, the log,(CN ratio) segments for each sample were
binned into 1 Mb windows across the genome. Bins that overlapped more
than one segment were assigned the value of the overlapping segment
with greatest absolute value.

Sample pairing scheme

For analyzing PT vs. PDX and PDX vs. PDX discordance across different
cohorts, each PT sample was compared to each of its available PDXs. Each
PDX sample was compared to every other PDX available from the same
original PT, provided that the PDX samples were of different passage
numbers. Cohorts with <5 PT-PDX or PDX-PDX pairs were excluded from
the respective analyses.

For analyzing PDX vs. PDX discordance by passage difference, PDX
samples were paired with later-passage PDX samples in the same PDX
model with the minimum possible passage difference.

For analyzing trios from the EuroPDX WGS cohorts, each model with a
PT and two PDX samples of different passage numbers was evaluated by
comparing the PT to both PDXs in order to calculate the discordance
between PT and the earlier-passage PDX and that between the PT and the
later-passage PDX.

Computing CNA discordance between paired samples using
thresholds

CN gains and losses were defined as log,(CN ratio) >=0.3 or log,(CN ratio)
<=-0.3, respectively. For a 1Mb bin to be discordant between two
samples, one sample must uniquely have a CN gain or loss, and additional
criteria specifying the difference in log,(CN ratio) required between the
two samples must be satisfied, to exclude borderline cases. In full, if two
samples have log,(CN ratio) values A and B, the samples are discordant if
at least one of the following conditions are met:

(A>=0.3&B<0.3) & ((A— —B)>=0.3|(B<0.1))
(A< =—-03&B>-10.3) & ((A——B)<=—-0.3|(B>—0.1))
(B>=0.3&A<0.3) & ((B— —A)> = 0.3|(A<0.1))
(B< = —0.3&A>—0.3) & ((B— —A)< = —0.3|(A> — 0.

The fraction of 1 Mb bins discordant across the genome between two
samples is defined as the number of discordant bins divided by the
number of bins across the genome for which both samples have log,(CN
ratio) values.

For a chromosome arm to be discordant between two samples, >=75%
of the 1 Mb bins in the chromosome arm must be discordant using the
above thresholds, and these discordances must always be due to one
sample having the greater log,(CN ratio) and the other sample having the
lesser log,(CN ratio).

To exclude highly-discordant cases that may be due to tumor purity
issues, a sample was assumed to lack sufficient tumor fraction to analyze if
<5% of the 1 Mb bins in its genome with log,(CN ratio) values had absolute
values of >=0.3. 100 samples were removed from analysis due to this
criterion.

Copy number analysis using ichorCNA

For each sample, the log,(CN ratio) values at each 1 Mb bin were passed in
as input to a modified version of the Hidden Markov Model-based
algorithm ichorCNA(11). This version of ichorCNA calls large-scale CNAs
and estimates tumor fraction and ploidy from a sample’s median-
normalized, GC-corrected log,(CN ratio) values across the genome.
ichorCNA uses a probabilistic model to predict CNAs and does not use
log,(CN ratio) thresholds. PT samples were run with normal cell fraction
initializations of 0.25, 0.5, and 0.75, and PDX samples were initialized with
0.05 normal cell fraction. Samples were run for starting conditions of both
ploidy=2 and ploidy=3. ichorCNA selects a sample’s final solution based
on the likelihood scores of the set of solutions produced from the
different runs.

If the ploidies of each set of paired samples in a model did not converge
to within 0.2 of each other, some of the samples were rerun with their
starting ploidies restricted to one value to increase the likelihood of each
sample having similar estimated ploidy. The details of this approach
depended on the composition of the model: If a model was composed of
one PT and one PDX, the PT sample was rerun with the closest possible
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starting ploidy to the PDX’s estimated ploidy. If a model was composed of
two PDXs, the sample with lower tumor fraction was rerun with the closest
possible starting ploidy to its pair's estimated ploidy, and if these samples
had equal tumor fraction, the sample with higher ploidy was rerun. Finally,
if a model was composed of more than two samples, the starting ploidy
was restricted to the most common rounded estimated ploidy. In the case
of multiple equally common rounded estimated ploidies, the new starting
ploidy was picked randomly from those ploidies.

Computing CNA discordance between paired samples from
ichorCNA results

CNA profiles across the genome were transformed using the equation:

Ploidy adjusted CN = CN / ploidy * 2 (4)

Rounded, ploidy-adjusted CN of >2 was defined as a CN gain, and <2 as
a loss. For a 1 Mb bin to be discordant between two samples, one sample
must uniquely have a CN gain or loss, and the unrounded ploidy-adjusted
CNs must also differ between the two samples by > = 0.5.

ichorCNA calls some 1 Mb bins as subclonal CN gains/losses. Subclonal
CN calls with >90% estimated cellular prevalence were treated as clonal
gains/losses, and subclonal CN calls with <10% cellular prevalence were
treated as neutral CN. These calls were then subjected to the same ploidy-
adjustment as other clonal calls.

Subclonal copy number calls with intermediate cellular prevalence
(between 10 and 90%, inclusive) were not considered for computing
discordance.

Chromosome arm level discordance between two samples was again
defined as>= 75% discordance of the 1 Mb bins in an arm, with one
sample always having the greater CN and the other sample having the
lesser CN.

Samples were excluded from analysis if ichorCNA estimated that the
sample contained <5% tumor fraction and/or if <5% of the bins were
clonally altered from neutral CN after ploidy-adjustment and rounding.
52 samples were excluded based on these criteria.

Advantages of our copy-number discordance calculations

1. Importance of direct inference of copy number events. Our
discordance estimation is based directly on the inferred copy
number. To obtain copy number, we applied two approaches: (1)
thresholding criteria on the log,(ratio) values; and (2) ichorCNA,
which accounted for data variability, tumor purity, ploidy, and
potential mouse DNA contamination. For both approaches, we
computed the percentage of the genome that showed discordance
based on copy number changes. By contrast, Woo et al. compared
pairs of samples using the Pearson correlation between normalized
log2 ratio data, which are typically the input data into copy number
algorithms.

2. Importance of direct copy number discordance calculation. The
pitfalls of the Pearson correlation approach include the masking of
true CNA discordance from smaller segments and more extreme
copy number values. Furthermore, the degree of concordance can
be arbitrary because interpretation of the correlation coefficient is
challenging. By contrast, our approach evaluates the actual CNA
events that lead to breaks in the genome, leveraging accepted and
conventional ways to analyze CNA. Furthermore, we use the
fraction-of-the-genome-discordant metric, which is widely used for
measuring genomic and chromosomal instability. The discordance
results between ichorCNA and the thresholds-based strategy exhibit
high level of agreement (Supplementary Fig. 3), demonstrating the
consistency of our results despite using two entirely different
approaches for copy number calling.

3. Importance of direct comparisons with related studies. As recent
studies (Sun et al. and Ben-David et al.) also used the discordance
metric for estimating the magnitude of PDX evolution, this approach
is more appropriate for direct comparisons between datasets and
studies.

Gene discordance analysis

For each 1 Mb bin, the proportion of discordance across pairs within a
cohort was computed. All protein-coding genes were assigned a
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proportion of discordance based on the overlapping bin with the gene
boundaries. If more than one bin overlapped the gene boundaries, the
average proportion across the overlapping bins was used. Cancer genes
were determined by the 704 Tier 1 and 2 Cancer Gene Census (https://
cancer.sanger.ac.uk/cosmic/census?tier=all) from the COSMIC database?2.

Gene set enrichment was performed using over-representation analysis
for MSigDB Hallmarks (H). For each cohort, the top 2.5% of most discordant
genes with a proportion >0.25 were selected from the full set of protein-
coding genes. Cohorts with no genes meeting the criteria of >0.25
proportion were excluded. A hypergeometric test was performed for the
selected genes and for each Hallmark. The enrichment score (ES) for
hallmark gene set s and cohort ¢ was defined as

ESs = log (’% / %) )
C

where N, is the number of selected genes for cohort ¢; x; ¢ is the number of
genes from the N, selected genes that are in hallmark set s and cohort ¢; gs
is the total number of genes in hallmark s; and G is the total of number of
genes from all hallmark sets combined. The p-values were adjusted for
multiple hypothesis testing using Benjamini-Hochberg method.

Statistical analysis

The statistical significance of the difference in genomic discordance
between PTs vs. early-passage PDXs and PTs vs. later-passage PDXs was
determined by one-sided Wilcoxon signed-rank test. The statistical
significance of the difference in genomic discordance between matched
PDX pairs with low (1-2), intermediate (3-5) or high (=6) passage number
difference was determined by Mann-Whitney U test. Statistical analyses
were performed using the SciPy Python library. Plotting was performed
using the Pandas and Seaborn Python libraries.

Power analysis for PDX selection against recurrent
aneuploidies analysis

The prevalence of specific aneuploidies in patient tumors for a given tumor
type was calculated from the aneuploidy calls of 10,522 cancer genomes
from The Cancer Genome Atlas (TCGA) as presented in Taylor et al.?3. Arm-
level alterations with prevalence >0.25 were defined as recurrent. We
determined the minimum sample size n needed to detect a 10% absolute
decrease in the prevalence of a recurrent arm for a specific tumor type
with sufficient power of 80%, using a one-sided one-sample proportion
test.

21-a +z175 p(1-p)

po(1-po) (6)
P —Po

n = po(1 — po)

The reference p, represents the expected prevalence of the recurrent
arm in the TCGA patient tumors for a specific tumor type, while p
represents the scenario for a 10% prevalence decrease; p = po - 0.1. z is the
inverse of the cumulative distribution function with Type | error a = 0.05,
Type Il error 3 = 0.2, and power 1-f = 0.8. For each recurrent arm of a
given tumor type, we compared the powered sample size n to the number
of PT-PDX comparisons available in our dataset for the given tumor type.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

All datasets used in this analysis are publicly available in Supplementary Data 1 in the
Woo et al study’® (Gene Expression Omnibus accession umbers GSE90653, GSE3526
and GSE33006 and ArrayExpression accession number E-MTAB-1503-3).

CODE AVAILABILITY

The codes used to analyze the data are publicly accessible at https://github.com/
GavinHalab/pdx_evolution_study.
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